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Abstract— Goal: Whole-exome sequencing provides a more cost-
effective way than whole-genome sequencing for detecting genetic
variants, such as copy number variations (CNVs). Although a
number of approaches have been proposed to detect CNVs from
whole-genome sequencing, a direct adoption of these approaches
to whole-exome sequencing will often fail because exons are sepa-
rately located along a genome. Therefore, an appropriate method
is needed to target the specific features of exome sequencing data.
Methods: In this paper, a novel sparse model based method is pro-
posed to discover CNVs from multiple exome sequencing data.
First, exome sequencing data are represented with a penalized
matrix approximation, and technical variability and random se-
quencing errors are assumed to follow a generalized Gaussian
distribution. Second, an iteratively reweighted least squares algo-
rithm is used to estimate the solution. Results: The method is tested
and validated on both synthetic and real data, and compared with
other approaches including CoNIFER, XHMM, and cn.MOPS.
The test demonstrates that the proposed method outperform other
approaches. Conclusion: The proposed sparse model can detect
CNVs from exome sequencing data with high power and precision.
Significance: Sparse model can target the specific features of ex-
ome sequencing data. The software codes are freely available at
http://www.tulane.edu/ wyp/software/Exon_CNV.m

Index Terms—Copy number variation (CNV), exome sequenc-
ing, iteratively reweighted least squares (IRLS), matrix approxi-
mation, sparse modeling.

I. INTRODUCTION

HE rapid evolution of next-generation sequencing (NGS)
T technologies enable us to study genomes with high resolu-
tion [1], [2]. As a result, methods aiming to detect genomic vari-
ations/mutations based on NGS platforms emerge in the last few
years [3], [4]. Among many genomic variations/mutations, copy
number variations (CNVs) are extensively studied, which are
associated with a variety of complex diseases, e.g., Alzheimer
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disease [5], autism [6], cancer [7], schizophrenia [8], osteo-
porosis [9], etc. CNV is defined as a type of genomic variation,
including duplications/gains or deletions/losses of a DNA seg-
ment of size larger than 1 kbp [10]. A widely accepted expla-
nation on the mechanism by which CNVs convey phenotypes
is the dosage effect: If a CNV takes place at a genomic region
which harbors a dosage-sensitive segment, the corresponding
gene expression level increases or decreases depending on the
CNV type (duplication or deletion), and consequently leading
to the abnormality of phenotype [11].

CNVs present frequently not only in human genome but also
in other mammal genomes, so techniques such as multicolor flu-
orescence in situ hybridization (M-FISH) [12], [13] and array
comparative genomic hybridization (aCGH) [14] have been ap-
plied to their detections. With the emergence of high-resolution
NGS, more and more biological investigators migrate to NGS
platforms for the study of CNVs, and several detection tools
have been developed [15]-[22]. Inspired by the detection meth-
ods from aCGH platforms, which use the unbalanced nature
of CNVs, the majority of NGS-based methods utilize the read
depth signal [4] to detect CNVs. The read depth signal can be
viewed as a pileup that bins the aligned short reads into equally
sized genomic regions. Therefore, it can reflect the CNV states:
The amplified read depths indicate CNV duplications, while the
shrunken ones indicate deletions.

To achieve good detection performance in term of sensitivity
and specificity, high coverage sequencing is always favorable.
However, due to the high cost of sequencing whole genome
(about 5000 dollars on July, 2014 [23]), sequencing only the
exonic regions was proposed [24]. Exons (or exome) comprise
only 1% to 2% of whole human genome [25] and distribute
separately, yet they have great importance to genome studies
because they are in protein-coding regions that impact gene ex-
pression. A direct application of existing CNV tools will often
fail to target the specific features of exome sequencing [26], and
consequently several methods have been proposed specifically
to detect CN'Vs from exome sequencing [27]-[30]. Earlier stud-
ies model read depth signals with Poisson distribution [21], or
model ratio of read depth signals with Gaussian distribution [ 16],
[17]. Recent studies show that sophisticated distributions, such
as beta binomial [28] or negative binomial distribution [19],
[29], are more appropriate. However, for a large pool of data
sequenced from several subjects and experiments, data homo-
geneity could be weak, demanding a more robust model. To
deal with this situation, CONIFER [30] and XHMM [31] utilize
principal component analysis (PCA) to reduce the dimension-
ality of data. From a sparse approximation point of view, the
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Fig. 1. Estimation of parameter p in real data study. (a) KL divergence curve with respect to p ranging from 0.5 to 1.5 with increment of 0.01. The red circle

marks the minimum where p = 0.92. (b) Observed and theoretical distribution with p = 0.92, and the Q—Q plot of these two distributions is displayed in (c).

success of CoNIFER and XHMM is actually because of PCA’s
ability to capture the sparse structure of sequencing data pro-
jected into eigenspace. Motivated by this observation, in this
paper, we propose a novel sparse model to detect CNVs from
exome sequencing by considering the sparsity of the data.

This paper is organized as follows. In Section II, we intro-
duce a penalized sparse approximation model, and propose an
iterative algorithm to optimize the model. Some computational
issues will also be discussed in this section. Section III consists
of three subsections: In the first subsection, a set of synthetic
data is simulated to test the detection performance of the pro-
posed method. In the second subsection, the approach is applied
to real data analysis, and its detection performance is compared
with three published software, and a known database containing
CNVs [32]. In the third subsection, we discuss the performance
of the method and some computational issues. This paper is
concluded with a summary of the advantage of the proposed
method.

II. METHODS
A. Notation Conventions

An upper case letter with bold typeface, a lower case letter
with bold typeface, and a letter with plain typeface denote a
matrix, a column vector, and a scalar, respectively. A letter with
a hat denotes the estimate of that variable. For example, A is a
matrix, whose jth column is denoted as a;, and the ith element
of a; is denoted as a;;, with estimate @;;. For matrix A, the
¢, norm is defined as || A, = (3_,; [ai; |P)1/7; and for vector
a;, the £, norm is defined as |a;||, = (3, |ai;|?)!/”. The £
norm is defined as the number of nonzero entries in a matrix
or vector. For example, for a scalar a;;, |a;;|o = 0 if and only
if a;; = 0; otherwise, |a,;|o = 1. For vectors and matrices, the
entry-wise multiplication (or Hadamard product) and division
of two matrices A and B with same dimension are denoted
as A ® B = [a;;b;;] and A @ B = [a;;/b;;], respectively. For
vector a;, diag(a;) denotes a diagonal matrix with the main
diagonal a;, while for matrix A, diag(A) denotes the vector
formed by the main diagonal of A. 7, denotes the mean value
of y,,, across index m for given n, and the notation of ¥, is
similar.

B. Penalized Sparse Approximation Model

Let y,,,, denote the read depth at mth exon of nth sample,
and let us assume v,,,,, as follows:

D

Ymn = dmvncmn + emn

where d,,, is the expected normal (without CNV) read depth
of the mth exon without coverage difference across samples;
v, 1s the sequencing coverage of the nth sample; c¢;,, is the
copy number state of the nth sample at the mth exon (e.g., 0
for homozygous deletion, 0.5 for heterozygous deletion, 1 for
normal, 1.5 for heterozygous duplication, etc.); and e,,,, is the
measurement deviation between the observation and expected
value.

Model (1) will be solved with sparse and low-rank approx-
imation [33]. Note that most c¢,,,, are equal to 1, so ¢;,,, — 1
has sparsity. Note also that the normal read depth d,, and se-
quencing coverage v,, are main factors that contribute to ¥, ,,,
while ¢,,,, and e,,, are random variations. The observed data
have the degree of freedom of M N since there are M N data
points ¥,,,,’s. Consider the ideal situation when neither CNV
nor measurement deviation presents in the observed data, i.e.,
C¢mn = 1, €y, = 0,theny,,, 'saredetermined by d,,, ’sand v,,’s,
whose degree of freedom is M + N. So the approximation of
Ymn S With d,’s and v,,’s has low-rank property. When v, ,,,
dp, , and v,, are expressed in matrix form, this low-rank property
is more clear (see Section II-E for more details).

Furthermore, we assume that the normalized measurement
deviation e, /v, follows identical independent distribution
£(0) with parameter set 0. f(0) is usually assumed to be Gaus-
sian distribution, but real data analysis shows that Gaussian dis-
tribution cannot fit the observation appropriately (see Fig. 1(b),
the observed distribution is more spiky compared with a Gaus-
sian distribution). We also simulated dataset with negative bino-
mial distribution, and Kolmogorov—Smirnov test suggested that
normalized measurement deviations do not follow the Gaussian
distribution (p-value is 5.5e—32). Therefore, we propose to use
the generalized Gaussian distribution, which is characterized by
one extra parameter [p in (2)] that controls the shape of the
distribution.
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The zero-center generalized Gaussian distribution reads
_ p —(lemn /vnl/o)? )
20T(1/p) " @

where p and o are shape and scale parameters (p = 2 and 1 corre-
spond to the Gaussian and Laplacian distribution, respectively);
and T'(+) is the gamma function. The variance of generalized

f(emn/vn |p7 J)

Gaussian distribution is §2 = U;fl(%f ) and therefore, o can be
approximated as
T3/p)

If 4,0 » P, and o are known, the maximum likelihood estimator
of d,,, v,, and ¢,,, can be obtained as follows:

H f(ymn /Un, — dm Cmn |p7 0)~ “)

m,n

max
A U Cmn

Substituting (2) into (4), and taking the negative logarithm, we
have
min 0-7[) Z ‘ymn/vn - dm Cmn |p + C(Pv J) (5)

A U Cmn
m,n

where ¢(p, o) is a constant with respect to d,,, vy, ¢y and,
therefore, can be omitted in the optimization criterion. Similarly,
the coefficient o P can be omitted as well.

The estimation of d,,, , v,,, and ¢;,,, from g, ,, in (5) is ill-posed
since there are more unknown variables than known ones. Based
on the Tikhonov regularization framework [34], to address this
issue, a penalty term is needed. Note that CNVs cover only a
small portion of whole genome (10% [35]); therefore, most loci
are at normal status, i.e., most ¢,,,,’s equal to 1. We incorporate
this prior knowledge into the model by introducing a penalty
term A|¢;,,, — 1]o. Here, A is the penalty level caused by a CNV
event, and | - |¢ is the sparsity inducing norm that constrains
most of ¢,,,, to 1 when A is sufficiently large [36]. When there is
a CNV event, i.e., ¢, # 1, a penalty is added to the criterion;
otherwise, no penalty is imposed.

Sparse models are originally formulated with ¢, norm, which,
however, often lead to a NP-hard problem [37] and become
computationally prohibited. Therefore, /1 norm is employed to
relax the problem, which can also enforce sparsity [38] and the
corresponding model can be solved more efficiently [39]-[41].
However, the /; solution is biased [42]. Therefore, we use £
norm in our model, and we show later that we can develop an
efficient solver for ¢, norm-based optimization problem.

Based on above analysis, the estimate of d,,, , v,,, ¢, can be
obtained from the following optimization:

Z {‘ymn/vn — dm Con |p + }"|Cmn - 1|0} . (6)
n

min
dm Vn sCmn

C. Optimization Algorithm

When p < 1 (this is the case in our study, as can be seen in the
subsection of real data analysis), the solution to the problem (6)
becomes more complicated because of the nonconvexity of both
£, and £y norm. To address the optimization problem involving
£, norm with p < 1, Daubechies et al. proposed an iteratively

reweighted least squares (IRLS) algorithm [43]. In this subsec-
tion, we propose a two-step optimization procedure based on
IRLS.

Because of the binary characteristic of ¢; norm, the penalty
term A|c,,,, — 1]o equals to either O or A. As a result, if d,,’s
and v,,’s are known, the minimum of (6) occurs at

17 |ymn /U'n - dm ‘p g A

ym n
Vpdy,’

Cmn = T (ymn 5 dm 3 Un) =

otherwise.

(N

Based on this observation, the first step of the proposed two-

step optimization procedure aims to solve (6) with respect to
d,, and v, when all ¢,,,,,’s equal to 1, or

min Z |ymn/vn - dm ‘p' (8)

A 00
m,n

In the second step, c,,,, s are estimated according to (7) given
d,,’s and v,,’s.

To address problem (8), d,,,’s and v,,’s are estimated alterna-
tively: estimate d,,,’s for fixed v,,’s, and then estimate v,,’s for
fixed d,,’s.

1) When fixing v,,’s, problem (8) could be decomposed into

M subproblems with dimension 1, which reads (for fixed
m)

Iglin Z [Ymn /Vn — dpn [’ ©)
n

Since £, is non-Lipschitz continuous, the minimum of (9)
should occur at one of those non-Lipschitz points [44],
i.€., Ymn /Vn . To find the optimal minimizer, an exhaustive
search of all possibilities is needed.

2) When fixing d,,’s, problem (8) could be decoupled into
N subproblems

minz [Yrn [0 — di |7

Un

(10)
m

This is a nonconvex criterion since £, norm is involved. So

we adopt the IRLS algorithm [43]. The IRLS iteratively

constructs a weight vector w of dimension M with

(1)

Wy = ‘dm - ymn/vn |p72'

Then, the regression coefficient v,, is updated as

U = (Z(wmym) (Z(wmymdm) - (12

m m

D. Determination of Tradeoff Parameter A

The determination of A is crucial for the final detection perfor-
mance since A controls the tradeoff between the data-fitting term
and the penalty term [see (6)]. It is obvious that small A tends
to encourage the detection of CNV events among probes, and
consequently, both power and false detection rate will increase,
and vice-versa.

Theoretically, under the Bayesian framework, A can be cal-
culated if the prior knowledge about ¢ and c,,,’s are given
a priori [45], but in real applications, these information are
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Fig. 2. Results of the proposed algorithm in Simulation I. Blue plus markers represent different level of A and red circle corresponds to the solution that yields

lowest SIC. (a) and (b) ROC of the algorithm for data with generalized Gaussian noise added with variance 25 and 225, respectively. (c) Read depth is sampled
with the Poisson distribution. (d) and (e) SIC curves correspond to (a) and (b). The AUC of (a), (b), and (c) are 0.99, 0.90, and 0.95, and the accuracies at the red
circles are 0.99, 0.86, and 0.98, respectively. (f) Typical cost function with respect to the iteration index.

not readily available. Empirically, researchers can tune a wide
range of A values manually and make the decision based on the
problem at hand. However, an automatic tuning procedure to
choose this parameter is desirable. To this end, a model selec-
tion technique based on a certain criterion is employed, e.g., the
L-curve [46], Akaike information criterion [47], Schwarz infor-
mation criterion (SIC) [48]. We propose to use the SIC for its
robust performance [49], which has been adopted in our earlier
CNYV detection studies [14], [22] and also in other work [50].

After the iterative optimization procedure, d,,, vy, Cpy, are
determined for a given A with (7). The corresponding SIC at
this X is calculated as

|ym n / Up — dm Cmn |p
( mwm@p

I'(3/p)

where the first term is the log-likelihood (¢ is the standard de-
viation defined in Section II-B), and the second term takes into
account both the number of observations M N, and model com-
plexity x, which is the number of free c,,,’s (those ¢, s not
equal to 1).

One can tune A on a grid, and the corresponding SIC(A)’s are
evaluated according to (13). The best A is achieved at the point
with the lowest SIC value (red circles in Fig. 2(d) and (e)):

SIC(h) =)

m,n

+In(MN)k p (13)

A = arg min SIC(%). (14)
A

E. Computational Issues

1) Matrix Acceleration: The proposed algorithm was pre-
sented for scalar variables. If one implements with scalar opera-
tions, the computation burden should be very heavy since there
are several nested loops. For efficient implementation, in the
following, we reformulate the algorithm for matrix operations.

The matrix alternative of model (1) reads

(dv")oC+E (15)
where d collects the expected read depth of M exons; v col-
lects the coverage of N samples; Y = [y,;,,], C = [¢;nn], and
E = [e,,,,] denotes read depth data, copy number states, and
measurement deviations, respectively. Based on these notations,
the matrix form of optimization problem (6) reads

ming,,.c {|[Y¥ (diag(v)) ! — (diag(d)C5 + 1€ — 1]}
s.t.||d||s = 6M. (16)

Note that in model (15), the outer product between vector
d and v has rank 1, and C' —1 is a sparse matrix. So this
model approximates raw data matrix Y with a low-rank sparse
model [33], and considers other factors as variations or noise.

Note also that when no constraint is imposed, the model
yields v, — +00,d,, — 0, ¢, — 1. To avoid this, we impose
a constraint on d such that it has a fixed /5 length 0 M, where
0 is the row standard deviation of Y, and is calculated as the
mean of the standard deviations of the row vectors of Y.
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TABLE I
SUMMARY OF ALGORITHM

Input: Y, p, A.

StepO: Initialize v.
Stepl: Estimate d according to (18),
normalize d: d = d/||d|6 M,
update W according to (19),
estimate v according to (20),
iterate Step1 until reaches stopping condition.
Step2: Estimate C' according to (17).
Output: v, d, and C'.

According to (7), if knowing Y, d, and v, the estimate of C
is given by

C=rm7(Y,dv). (17)
If knowing Y and v, the estimate of d is
d = ES(Y diag(v) ™) (18)

where E S performs an exhaustive search of (9) over each row.
Finally, according to (11) and (12), if knowing Y and d, the
estimate of v reads

W = |di} — Ydiag(v) P2 (19)

v =diag W' (Y 0Y)) 0 diag W (Y © (di}))) (20)

where 2 is an all-one vector of length V.

2) Initialization and Stopping Condition: To start the iter-
ation, an initial guess of v is needed. Since v,, represents the
coverage of the nth sample y,,, we use the ¢, norm ||y, |2 to
initialize v,,. The algorithm converges fast [see Fig. 2(f)], and
we terminate the program when the iteration index exceeds a
predefined number (e.g., 100).

The quasi-code of the proposed algorithm to optimize prob-
lem (16) is shown in Table I.

III. RESULTS AND DISCUSSION
A. Test on Synthetic Data

The test of synthetic data includes two simulations. In the first
simulation, the read depth data v,,, were generated directly
from a statistical model, while in the second simulation, the
synthetic data were sampled by following the NGS protocol,
i.e., a hybrid model was used.

Since in the simulation studies the ground truth are avail-
able, we can evaluate the detection performance by utilizing the
receiver operating characteristic (ROC) curve, which displays
the true positive rate (TPR or sensitivity/statistical power/recall)
versus false positive rate (FPT or 1-specificity). Other statistics
can also be deduced from these two quantities. In particular, we
will use the area under the curve (AUC) to quantify the detection
performance; this quantity takes value between 0 and 1, and for
a perfect detector, this quantity should reach to 1.

1) Simulation I: First, the ideal coverage vector vy and read
depth vector dy, were sampled. The column vector v, has
N = 60 entries representing 60 samples, and each entry follows

a uniform distribution within the interval between 0.9 and 1.0,
so the sequencing coverage of 60 samples is appropriate. The
column vector dy consists of M = 1000 target probes, and each
follows a uniform distribution between 10 and 100. We choose
100 as the upper bound to accord with the order of magnitudes
of the real data in the next section, in which 0.67% read depth
exceed this bound. We choose uniform distribution to simulate
data because this distribution has maximal entropy and does
not favor any specific value or distribution. Second, the ideal
copy number state matrix Cy with 1000 rows and 60 columns
was sampled. Each entry of the matrix has 1% probability to
be 0, 4% chance to be 0.5, 90% to be 1, 4% to be 1.5, and
1% to be 2, representing 2-copy (homozygous) deletion, 1-copy
(heterozygous) deletion, normal state, 1-copy duplication, and
2-copy duplication, respectively. So totally 10% loci cover
CNVs, being consistent with previous study [35]. The noise-free
exonic read depth matrix is calculated as Y = dgvg o Cy.
Two methods were employed to simulate the sequencing uncer-
tainty: in the first method, the independent identically distributed
noise was assumed to follow a generalized Gaussian distribu-
tion with p = 0.8,0 =4 (close to real data) and was added
to ideal Y, yielding the synthetic dataset Y'; in the second
method, each entry of Y follows the Poisson distribution, with
parameter being the corresponding entry in Y.

After the synthetic data were simulated, the proposed detec-
tion algorithm was called to detect CN'Vs. The maximal iteration
number was set to 100 for fixed A, and X took totally 31 values by
following a geometric sequence from 1.2° = 1t01.230 = 237.4
with a common ratio 1.2. Fig. 2 shows the performance of the
algorithm in Simulation I, where panels (a) and (b) show the
ROC when generalized Gaussian noise with the variance of 25
and 225 was added, respectively, and (c) is the ROC with the
Poisson distribution. Each blue dot corresponds to a TPR ver-
sus FPR scenario for a given L. When the tradeoff parameter A
increases, the ROC trajectory evolves from northeast (high TPR
and FPR) to southwest region (low TPR and FPR) indicating
that a small A tends to deliver high TPR and vice versa. It is
also shown that with the increase of noise level [see (a) and
(b)], the ROC performance decreases, and the quantitative esti-
mate AUC decreases from 0.99 in (a) to 0.9 in (b). The above
two observations are consistent with our expectation. Panels (d)
and (e) display the SIC value with respect to the tradeoff pa-
rameter A that corresponds to the simulations of panels (a) and
(b), respectively. The red circle indicates the best X that gives
the lowest SIC. By comparing (a) and (d) with (b) and (e), re-
spectively, it can be seen that when the noise level is relatively
low, the valley in the SIC curve tends to be flat [see panel (d)].
Therefore, the resulting A is small, yielding high TPR [see panel
(a)]. On the other hand, for high noise level, large A [see panel
(e)] will be yielded, delivering low FPR at the cost of TPR
loss [see panel(b)]. Generally speaking, this simulation results
demonstrate that the SIC can provide user with a reasonable A
at various noise level. Panel (f) displays a typical cost function
with respect to the iteration number showing that the algorithm
converges within 100 iterations.

2) Simulation II: In this simulation, we followed the NGS
protocol to generate hybrid dataset that is more realistic.
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ROCs of detecting CNVs in Simulation II. Blue, red, magenta, and black color represent the ROC of the proposed method, CoNIFER, XHMM, and

cn.MOPS, respectively. The plus markers represent different levels of A, —threshold, fourth/eighth parameter field of XHMM, and —upperThreshold/lowerThreshold.
The red circle marks the one that yields lowest SIC. (a) Each CNV covers three to six exons, while in (b) and (c) each covers six. In (a) and (b), the total number

of paired-end reads is 1e6, while in (c) this number is le7.

1) Download the .FASTA file of chromosome 21 of hu-
man reference genome hgl9 and the corresponding .bed
file that contains the loci of exons from UCSC genome
browser (http://genome.ucsc.edu/cgi-bin/hgTables?org=
human). Considering the distribution of human exon size,
only exons with length larger than 100 bp were re-
tained [51], yielding totally 1429 exon loci.

Call RSVSim [52] to simulate 60 samples of chromosome
21, and each contains a synthetic CNV located randomly,
which is of length 1 kbp to 1 Mbp and covers three to six
consecutive exon loci.

Call wgsim from the samtools package [53] to simulate 1
million short paired reads of length 70 bp for each sam-
ple chromosome, with base error rate 0.02, outer distance
between the two ends 500 bp, standard deviation 50, mu-
tation rate 0.001, indel fraction 0.15, and extended indel
probability 0.3.

Call bowtie [54] to align the paired ends to the human ref-
erence genome hgl19. Parallel alignment with four cores
was enabled and the output was sorted, indexed, and con-
verted to .bam format with samtools, yielding 60 bam
files.

Call rpkm tool of CoNIFER [30] to calculate the
RPKM (reads per thousand bases per million reads se-
quenced [55]) profile from each sample bam file. Since
CoNIFER needs to import a .bed file that lists the loci of
probes, we use the same one as in step 1).

Once RPKM profile of each sample chromosome was ready,
the proposed methods, CoNIFER [30], XHMM [31], and
cn.MOPS [21], were called to detect CNVs, respectively. To
obtain a fair comparison for each method, the significant pa-
rameters which can greatly change the performance in terms
of sensitivity and specificity were tuned to achieve the best
performance, and the less significant parameters were left as
default values. Since the low-frequency variations across the
RPKM profiles are limited, parameter —svd of CoNIFER and
—numPCtoRemove of XHMM were set to 3 such that the first
three singular value decomposition (SVD) components were
removed. Another crucial parameter —threshold of CoNIFER
determines whether a probe harbors a CNV or not, so it plays
a similar role as A, i.e., the decrease of this parameter will

2)

3)

4)

5)

increase sensitivity, but at a loss of specificity at the same time. In
our simulation, CoNIFER was called repeatedly with 15 distinct
—threshold values following an arithmetic sequence from 0.1 to
1.5 with a common difference of 0.1. For XHMM, we found that
the fourth and eighth fields in the parameter file, i.e., the mean
values of the Gaussian distributions corresponding to CNV dele-
tion and duplication, respectively, function like the threshold
and can control the tradeoff between sensitivity and specificity.
So in our simulation study, the fourth field is set the nega-
tive value of the eighth field, which was increased from 0.36 to
0.3 x 1.22Y with a common ratio of 1.2, yielding the ROC curve
of XHMM calls. For cn.MOPS, the parameters —lowerThreshold
and —upperThreshold are the equivalents of XHMM, so
we increased/decreased —upperThreshold/lowerThreshold from
272/ — 2721027/ — 27 with a common ratio of 2, yielding the
ROC curve of cn.MOPS calls.

The results are displayed in Fig. 3. It is shown that —threshold
of CoNIFER between 1.0 and 1.5 is a reasonable choice, and
with further decrease of this value, the specificity decreases
rapidly without much improvement of sensitivity. For XHMM
and cn.MOPS, with the decrease of the upper threshold param-
eters, the sensitivity improves at the cost of the loss of speci-
ficity. There is a transient on the cn.MOPS ROC, where the
FPR jumps from almost 0 to 0.92. Further experiments show
that there is a critical value for —upperThreshold of cn. MOPS
below which cn.MOPS achieves low specificity and vice versa.
Panel (a) shows that the sensitivity of using CoNIFER is ap-
proximately half of the proposed method at the same specificity
level. After more investigations, we found that this is because
CoNIFER requires three or more consecutive probes that exceed
the threshold to confirm a CNV. Considering that in Step 2 of
this section, a synthetic CNV may cover three to six probes, in
the case that one or more probes failed to exceed the threshold,
a missing hit may happen. In addition, less probes a CNV cov-
ers, the higher chance it may be missed. Taking this factor into
consideration, panel (b) shows the simulation result in which
each CNV covers six probes. It is shown that the sensitivity of
CoNIFER almost doubles at the same specificity level. In both
panels (a) and (b), the A chosen by the SIC is not satisfactory,
which yields high FPR. This might be due to the relatively high
noise level, since the sequencing coverage is 4.2. In panel (c) 10



502 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 68, NO. 3, MARCH 2016

million paired-end reads were sequenced; therefore, the overall
coverage increased by a factor of 10. The result indicates that
the performance (i.e., ROC) of the proposed method increases
slightly, but the estimation of A improves greatly.

B. Real Data Study

We downloaded the whole-exome sequencing data of ten
HapMap samples from the FTP of the 1000 Genomes Project
(see [56], http://www.1000genomes.org/). The dataset in-
cludes four CEU samples: NA12287, NA12749, NA12776,
and NA12828; and six YRI samples: NA19114, NA19129,
NA19147, NA19190, NA19225, and NA19257. These sam-
ples have been studied previously [32], and CNV calls can
be retrieved from the database of genomic variants (DGYV,
http://projects.tcag.ca/variation/). Raw sequencing reads were
already aligned to human reference genome GRCh3h/hg19 with
BWA [53] and stored in BAM files, so we downloaded these 10
BAM files and calculated RPKM values y for 186 741 exons
from chromosomes 1 to 22. Among them, 45 038 probes were
excluded from further analysis since their median RPKM is less
than 1 [30].

The parameter p was first estimated, which is needed to run
the proposed algorithm. We estimated p by fitting the observed
distribution f,},s of residuals yy"% — Ym. With a theoretical one
ftheo- The observed distribution was calculated via histogram of
the data, while the theoretical one can be calculated according
to (2).

Once fiheo and f,1s are known or estimated, their differ-
ence can be measured by utilizing the Kullback—Leibler (KL)
divergence, which is defined as

e In ( fobs(x)
fthco (LB)

DKL(fobs ”ftheo) = /

) fobs(z)dz.  (21)

We explored p from 0.5 to 1.5 with a common difference of
0.01 [see Fig. 1(a)]. For each fixed p and corresponding o (p)
estimated according to (3), fineo can be calculated according
to (2). Then the KL divergence of fi},0, from f,1,5 was calculated
according to (21). A low KL divergence value indicates a good
fitting; therefore, the criterion of selecting p is to find the one that
gives the lowest value. Fig. 1(a) shows that p = 0.92 yields the
lowest KL divergence, while (b) and (c) show that the theoretical
distribution with this p fits to the observed one extremely well.
Next, we run the proposed algorithm with estimate p = 0.92
to call candidate CN'Vs. The maximal iteration number was set
to 200, and the penalty parameter A was set to o In(M N) ac-
cording to the analysis of SIC curve. To reduce false detection
and fragmental region, CNV calls that cover less than three
exons were filtered out, and then neighboring CNV calls with
gap less than three exons were merged. At the end, the algo-
rithm outputted 35 CNV calls in total. We also run CoNIFER,
XHMM, and cn.MOPS to analyze the same dataset. For XHMM
and CoNIFER, the first three SVD components were removed,
and other parameters remain as default. CoNIFER, XHMM,
and cn.MOPS outputted 49, 32, and 44 calls, respectively.
Fromer [31] showed that there are two CNVs per individual

CoNIFER

XHMM

proposed cn. MOPS

proposed cn. MOPS proposed CoNIFER

DGV
(b) (c)

DGV

Fig.4. Venn diagrams of CNV detection results among the proposed method,
CoNIFER, XHMM, cn.MOPS, and DGV.

on average, so the numbers of calls are within the reasonable
range on the ten sample study.

Finally, we compared the CNV calls of the proposed method
with those of CoNIFER, XHMM, and cn.MOPS. The compari-
son result is displayed in the Venn diagram [57] of Fig. 4(a) and
summarized in supplementary Table S1, which shows that out of
35 CNV calls, 29 (82.9%) overlap with other calls (CoNIFER,
XHMM, or cn.MOPS). On the other hand, out of 49 CoNIFER
calls, 32 XHMM calls and 44 ¢cn.MOPS calls, 22 (44.9%) 14
(43.8%), and 33 (75.0%) overlap with the other calls, respec-
tively. This shows that the proposed method achieves higher
precision compared with other method, indicating more reli-
able detection performance. Note that there are two large over-
laps: One is the intersection between the proposed method and
cn.MOPS, and the other is between XHMM and CoNIFER. This
observation indicates that the proposed method and cn.MOPS
share similar performance, while CoONIFER and XHMM also
share the similar performance. This is consistent with the sim-
ulation results as shown in Fig. 3, where blue and black ROCs
have similar trajectory. It also supports the fact that XHMM and
CoNIFER utilize PCA as the main approach to reduce base-
lines [31]. To further verify CNV calls, we compared the calls
with DGV, and the overlaps are displayed in the Venn diagrams
of Fig. 4(b) and (c). It is shown in (b) that among the 27 over-
lapping calls of using cn.MOPS and the proposed method, 16
(59.3%) calls are included in DGV. On the contrary, even though
there are 53 DGV calls of the proposed method or CoNIFER
[see Fig. (c)], only 2 are detected by both methods. This
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suggests that those methods are complementary in detecting
CNVs. Note that since exome comprises 1% to 2% of the whole
human genome [25], the majority of CNVs listed in DGV are
not covered by exome sequencing. In the above comparison,
only CNVs in DGV covered with probes were taken into ac-
count, including 1759 calls. Among those calls, only a small
portion overlaps with our tested algorithms. The reason might
be that DGV gathers all reported CNVs, which is a union set of
several studies, so the retrieved calls might include some false
detections. For real data, since there is a lack of ground truth,
we use the F-scores [3] to qualitatively measure the detection
result. The F-score is calculated as follows. If a CNV call has
no overlap with DGV, the F-score is set to be 0; otherwise,
F =228 \where P is the precision (the percent of the CNV
call that overlaps with DGV) and R is the recall (the percent
of DGV that overlaps with CNV calls). Note that F-score takes
values between 0 (no overlapping at all) and 1 (perfect overlap-
ping). Among the 20 overlapping CNVs of using the proposed
method, 7 (35.0%) get F-score above 0.5, while for CONIFER,
XHMM, and cn.MOPS, this percentage is 34.3%, 25.0%, and
25.5%, respectively, indicating the good detection quality of the
proposed method.

C. Discussion

The proposed method has the following three features. First,
we assume that the ideal read depth of exome sequencing data
can be approximated with a low-rank matrix, based on which a
penalized matrix approximation model is proposed. CONIFER
actually used a similar assumption. In CoNIFER, the data matrix
is first factorized with SVD, and then singular vectors with
significant singular values are kept to approximate the raw data.
Therefore, the approximation matrix used in CoNIFER is also
low rank.

Second, real data analysis shows that the read depth of ex-
ome sequencing data can be fitted with the generalized Gaussian
distribution, and this information can be incorporated into our
model as a prior knowledge. The p parameter in the generalized
Gaussian distribution affects the performance of the proposed
method, which needs to be predefined before algorithm exe-
cution. To tune this parameter, we used the KL divergence to
determine the optimal p value.

Third, it is worth to note that the exon size is not incorporated
into our Model (1), since the read depth signal has taken this
factor into account. Another factor that is not incorporated ex-
plicitly into the model is the G-C bias. A previous study showed
that read depth signal is correlated with the G-C content [58],
which is uneven along the genome. Therefore, the detection
performance from single sample of whole genome sequencing
degenerates if the G-C bias is not corrected. Since the model (1)
dedicates to detect CNVs from a pool of samples, the effect of
bias caused by the G-C distribution is reduced implicitly.

The convergence of the optimization algorithm is a critical
issue in solving the proposed sparse model, which can impact
computational time. There are two steps involved with the op-
timization: the estimation of d and v. Daubechies et al. [43]
reported that the IRLS converges to a local minimizer with su-

perlinear convergence rate, and Nie et al. [59] provided a rigor-
ous proof that IRLS for ¢; ; -norm minimization converges to the
global minimizer. So for a given d, the IRLS estimate of v leads
to the decrease of the cost function. For a given v, an exhaustive
search also leads to the decrease of the cost function. Since d
and v are estimated alternatively and both estimates yield the
decrease of the cost function, overall the algorithm converges to
a local minimum. As demonstrated in our experiment [see Sim-
ulation I, Fig. 2(f)], the algorithm indeed converges very fast in
practice. On a desktop with Intel i7 processor, the processing of
the real dataset costs on average 5 s per iteration with 50 MB
memory allocation.

IV. CONCLUSION

A novel method was proposed to detect CNVs from exome
sequencing data. The method is based on the assumption that
the read depth of sequencing data could be approximated with a
low-rank sparse regression model. For the proposed model with
a penalty term, an efficient numerical algorithm was applied
based on the IRLS algorithm [43], [59]. The performance of the
proposed method was tested and validated on both synthetic and
real data. Our simulation studies demonstrate that the proposed
method can achieve higher detection power than three pub-
lished methods including CoNIFER, XHMM, and cn.MOPS,
especially at the CNV regions where the number of available
probes is limited. Experimental results on real data show that
they can be well fitted with the proposed model. In addition, the
outputted CNVs detected with the proposed method have higher
overlapping percentage compared with those from CoNIFER,
XHMM, and cn.MOPS calls, showing that it can detect CNV
with higher precision.

In order to make our developed algorithms and tools to be
publicly available so other researchers can use and compare
with their methods, we publish the source codes at http://www.
tulane.edu/ wyp/software/Exon_CNV.m
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